Railway Safety Assessment and Certification - forthcoming challenges
High Integrity Systems Symposium 2015

Bjørn Axel Gran

11/06/15
Content

• What is a railway system?
• What is a high integrity system in railways?
• Which work processes should I follow?
 – EN 50126, 50128 and 50129
 – The process within Signal in JBV
• A generic application?
• Challenges

- Godsvognene kom i 140 km/t

Hadde større fart enn først antatt. Les mer
The first railway in Norway came in 1854 (Eidsvoll – Oslo)

Today it is about:
- 4237 km tracks
- 245 km dobbel tracks
- 2572 bridges
- 716 tunnels
- 3690 crossing points
- 337 stations

All depending upon high integrity systems
A railway system

Kjørevegens fem hovedelementer:

1. Strømforsyningsanlegg: Kontaktledningsanlegget sikrer kontinuerlig overføring av elektrisk energi til togene.
2. Signalanlegg: Sikrer trygg, rask og punktlig togframføring.
3. Underbygning: Sikrer at sporet ligger stabil.
4. Teleanlegg: Sikrer nødvendig samband.
5. Overbygning: Sikrer at krav til aksellast, komfort, sikkerhet og hastighet ivaresas i togframføringen.

Cost new builds:
50% construction base
25% construction top
10% power
10% signal
5% tele and ICT
European Rail Traffic Management System (ERTMS)
The sw in a High Integrity System

- System software
- Interlocking software
 - Generic functions
 - Specific functions related to infrastructure
- Location specific software
 - Developed specific for each delivery

Diagram:

- Operation control equipment
- Other systems
- Operation interface
- Interlocking
- Element control
- Field equipment
Important processes

- EN 50126: Railway applications – The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) [EN 50126:1999]

- EN 50128: Railway applications – Communication, signalling and processing systems – Software for railway control and protections systems [EN 50128:2011]

- Technical Specifications for Interoperability (TSIs) (ERA)

- Work process for Signal («Signaltjenesters arbeidsprosess») (NAP).
 - Build on the basis of EN 50126, 50128 and EN 50129
EN 50126, 50128 and 50129

EN 50126: The life cycle – phases & tasks – apply for all high integrity railway systems – independent if they are containing signals or programmable logic

EN 50128: The life cycle to be applied when the application includes sw
 – Applies 4 SIL-levels
 • Detailed guidelines on activities, methods, tools, competence, documentation, traceability, etc.
 • Identifies 10 roles to be filled
 • Selection of techniques and measures

EN50129: pinpoints the importance of independence between roles
UPB – Detailed plan Signal
Some techniques

- Defensive programming
- Failure detection and diagnosis
- Self detection in code
- Modularisation
- Diversity
- Redundancy

- One approach is also to apply formal verification
 - See research by Terje Sivertsen, JBV
 - Applied HALDEN (Halden Algebraic Language and Design ENvironment) Prover and HALDEN ASL (Algebraic Specification Language) on the NSB-94-ssytemt at Heggedal station
Some challenges

• Each activity requires specific competence
 – Is the competence available?

• Most applications are provided by a supplier
 – How to transfer the knowledge from supplier to developer and operator?

• All systems have an interface to other systems
 – How to assure knowledge about neighbour (old) systems?
 – How to assure interoperability?

• Each activity requires a control, and each phase a validation and verification
 – How to maintain indolence in persons?
 – How to have access to competent assessors?
A bigger challenge?

Handlingsprogram 2014–2023

Nasjonal transportplan 2018 – 2027

Need 100 new engineers (+ 66%)?

Need 100 new validators (+ 33%)?
The new challenge

Thank you, Bjørn Axel

- Your conversation on the train made you an obvious target
- Your password was easy to guess
- Your e-mails showed us your critical contacts
- Your local files provided us with the design
- It was an easy task to hack the railway application
Thank you

Bjørn Axel Gran
R&D Manager Safetec
bjorn.axel.gran@safetec.no
+47 90 95 52 95

Bjørn Axel Gran
Professor II, IPK, NTNU
bjorn.a.gran@ntnu.no
+47 90 95 52 95